Solution to Exercise 18.11 (Version 1, 31/8/15)

from Statistical Methods in Biology: Design & Analysis of Experiments and Regression (2014) S.J. Welham, S.A. Gezan, S.J. Clark & A. Mead. Chapman & Hall/CRC Press, Boca Raton, Florida. ISBN: 978-1-4398-0878-8

© S J Welham, S A Gezan, S J Clark & A Mead, 2015.

Exercise 18.11 (Data: courtesy D. Gray, Horticulture Research International)

The viability of carrot seed depends greatly on the conditions under which it is stored. Replicate batches of 100 seeds were stored in each of four different conditions (labelled A–D). Four replicate batches were sampled from each condition at pre-specified times: conditions A and B were sampled approximately every 60 days and conditions C and D were sampled approximately every 30 days, and the number of non-viable seeds was evaluated. File CARROT.DAT contains unit numbers (*ID*), the structural factors (Batch, Sample), explanatory variables (factor Condition, variate *Days*) and response (variate *Count*). Use a GLM to model the number of non-viable seeds over time in each condition and check the fit of the model carefully. Is there any evidence of model misspecification? Identify any features of the data that are incompatible with the GLM.

Data 18.11 (CARROT.DAT) Counts (column Ct) of non-viable carrot seed in replicate batches (column B) evaluated at different times (measured in days, column D or by sample number, column S) following storage under conditions A-D (column C).

ID	В	S	С	D	Ct	ID	В	S	С	D	Ct	ID	В	S	С	D	Ct
1	1	1	А	0	12	81	2	6	В	306	17	161	3	9	С	242	42
2	1	2	А	61	17	82	2	7	В	364	17	162	3	10	С	273	57
3	1	3	А	119	14	83	2	8	В	424	24	163	3	11	С	306	76
4	1	4	А	181	12	84	2	9	В	515	28	164	3	12	С	334	76
5	1	5	А	242	25	85	2	10	В	608	39	165	3	13	С	364	93
6	1	6	А	306	23	86	2	11	В	699	50	166	3	14	С	391	93
7	1	7	А	364	41	87	2	12	В	790	68	167	3	15	С	424	100
8	1	8	А	424	41	88	2	13	В	885	60	168	3	16	С	453	100
9	1	9	А	515	80	89	2	14	В	976	90	169	4	1	С	0	19
10	1	10	А	608	93	90	2	15	В	1064	97	170	4	2	С	28	14
11	1	11	А	699	97	91	3	1	В	0	7	171	4	3	С	61	14
12	1	12	А	790	100	92	3	2	В	61	10	172	4	4	С	89	11
13	1	13	А	885	100	93	3	3	В	119	10	173	4	5	С	119	22
14	1	14	А	976	100	94	3	4	В	181	17	174	4	6	С	151	22
15	1	15	А	1064	100	95	3	5	В	242	7	175	4	7	С	181	34
16	2	1	А	0	10	96	3	6	В	306	11	176	4	8	С	213	32
17	2	2	А	61	21	97	3	7	В	364	17	177	4	9	С	242	49
18	2	3	А	119	18	98	3	8	В	424	21	178	4	10	С	273	59
19	2	4	А	181	21	99	3	9	В	515	27	179	4	11	С	306	70
20	2	5	А	242	24	100	3	10	В	608	36	180	4	12	С	334	88
21	2	6	А	306	35	101	3	11	В	699	50	181	4	13	С	364	96
22	2	7	А	364	33	102	3	12	В	790	66	182	4	14	С	391	96
23	2	8	А	424	43	103	3	13	В	885	70	183	4	15	С	424	100

ID	В	S	С	D	Ct	ID	В	S	С	D	Ct	ID	B	S	С	D	Ct
$\frac{1D}{24}$	<u>ь</u> 2	<u> </u>	$\frac{c}{A}$	515	77	$\frac{1D}{104}$		<u> </u>	B	976	91	$\frac{1D}{184}$		<u> </u>	$\frac{C}{C}$	453	100
24 25	2	9 10		515 608	77 94	104		14 15	в В	976 1064		184 185		10	D	455 0	100 11
			A														11 14
26	2	11	A	699 700	99 100	106		1	B	0	11	186		2	D	28	
27	2	12	A	790	100	107		2	B	61	4	187		3	D	61	9
28	2	13	A	885	100	108		3	B	119	8	188		4	D	89	14
29	2	14	A	976	100	109		4	B	181	5	189		5	D	119	17
30	2	15	A	1064		110		5	B	242	20	190		6	D	151	22
31	3	1	A	0	9	111		6	B	306	11	191		7	D	181	32
32	3	2	A	61	8	112		7	B	364	17	192		8	D	213	57
33	3	3	A	119	22	113		8	B	424	17	193		9	D	242	67
34	3	4	A	181	19	114		9	B	515	22	194		10	D	273	71
35	3	5	A	242	26	115		10	В	608	38	195		11	D	306	88
36	3	6	A	306	26	116		11	В	699	47	196		12	D	334	97
37	3	7	Α	364	37	117		12	В	790	58	197		13	D	364	99
38	3	8	Α	424	50	118		13	В	885	69	198		14	D	391	100
39	3	9	А	515	76	119		14	В	976	85	199		1	D	0	9
40	3	10	А	608	95	120		15	В	1064		200		2	D	28	8
41	3	11	А	699	99	121		1	С	0	12	201		3	D	61	8
42	3	12	А	790	98	122		2	С	28	8	202		4	D	89	17
43	3	13	А	885	100	123		3	С	61	15	203	2	5	D	119	17
44	3	14	А	976	100	124		4	С	89	15	204		6	D	151	28
45	3	15	А	1064	100	125	1	5	С	119	20	205	2	7	D	181	47
46	4	1	А	0	19	126	1	6	С	151	26	206	2	8	D	213	57
47	4	2	А	61	16	127	1	7	С	181	31	207	2	9	D	242	81
48	4	3	А	119	11	128	1	8	С	213	37	208	2	10	D	273	81
49	4	4	А	181	12	129	1	9	С	242	44	209	2	11	D	306	90
50	4	5	А	242	27	130	1	10	С	273	48	210	2	12	D	334	99
51	4	6	А	306	32	131	1	11	С	306	75	211	2	13	D	364	99
52	4	7	А	364	40	132	1	12	С	334	82	212	2	14	D	391	100
53	4	8	А	424	38	133	1	13	С	364	98	213	3	1	D	0	7
54	4	9	А	515	81	134	1	14	С	391	94	214	3	2	D	28	8
55	4	10	А	608	86	135	1	15	С	424	100	215	3	3	D	61	10
56	4	11	А	699	99	136	1	16	С	453	100	216	3	4	D	89	12
57	4	12	А	790	100	137	2	1	С	0	10	217	3	5	D	119	18
58	4	13	А	885	100	138		2	С	28	10	218	3	6	D	151	24
59	4	14	А	976	100	139	2	3	С	61	11	219	3	7	D	181	40
60	4	15	А	1064	100	140	2	4	С	89	10	220	3	8	D	213	62
61	1	1	В	0	11	141		5	С	119	13	221		9	D	242	71
62	1	2	В	61	11	142		6	С	151	26	222		10	D	273	89
63	1	3	В	119	18	143		7	С	181	21	223		11	D	306	97
64	1	4	В	181	9	144		8	С	213	33	224		12	D	334	98
65	1	5	В	242	15	145		9	Ċ	242	47	225		13	D	364	99
66	1	6	B	306	16	146		10	C	273	63	226		14	D	391	100
67	1	7	B	364	19	147		11	C	306	77	220		1	D	0	11
68	1	8	B	424	26	148		12	C	334	85	228		2	D	28	6
69	1	9	B	515	20	149		13	C	364	96	229		3	D	61	13
70	1	10	B	608	35	150		14	C	391	96	230		4	D	89	9
71	1	11	B	699	49	150		15	C C	424	100	230		5	D	119) 17
72	1	12	B	790	49	151		16	C C	453	100	231		6	D	151	25
14	T	14	U	170	τJ	154	-	10	C	тЈЈ	100	434	т	0	D	1.51	23

ID	В	S	С	D	Ct	ID	В	S	С	D	Ct	ID	B	S	С	D	Ct
73	1	13	В	885	56	153	3	1	С	0	9	233	4	7	D	181	42
74	1	14	В	976	80	154	3	2	С	28	15	234	4	8	D	213	62
75	1	15	В	1064	- 98	155	3	3	С	61	9	235	4	9	D	242	68
76	2	1	В	0	9	156	3	4	С	89	13	236	4	10	D	273	79
77	2	2	В	61	7	157	3	5	С	119	20	237	4	11	D	306	86
78	2	3	В	119	8	158	3	6	С	151	17	238	4	12	D	334	97
79	2	4	В	181	14	159	3	7	С	181	19	239	4	13	D	364	94
80	2	5	В	242	16	160	3	8	С	213	37	240	4	14	D	391	100

Solution 18.11

Within each storage condition, the design is effectively CRD with multiple replicates (batches) chosen at random to be evaluated at each sampling point. We therefore ignore the sample and batch factors in the data file for the purposes of analysis. The counts are the number of non-viable seeds out of 100 in each batch, so we assume a Binomial distribution. We want to model the proportion of non-viable seeds as a function of time (days in storage) which may depend on storage conditions, so we write our initial model as

Response variable:	Count
Probability distribution:	Binomial (number of tests $= 100$)
Link function:	logit
Explanatory component:	<pre>[1] + Days*Condition</pre>

This model allows separate lines on the logit scale for the proportion of non-viable seeds. The data is shown in Figure S18.11.1, and shows a logit-shape response to time of storage and that viability appears to differ greatly between storage conditions.

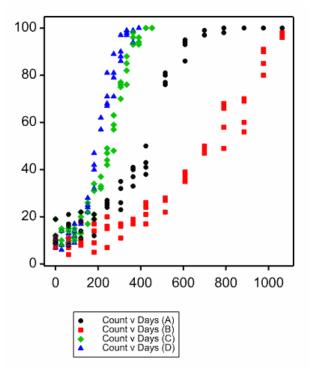
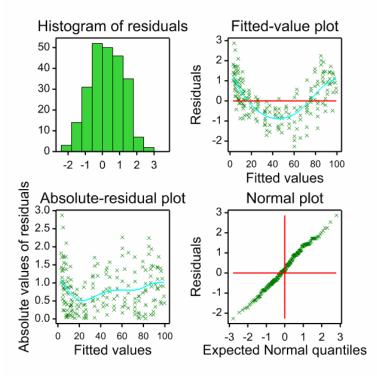



Figure S18.11.1 Number of non-viable seeds per batch plotted against number of days in storage.

We start by fitting this separate lines model and check for over-dispersion. The residual deviance from this model is 948.8 with 232 df, and when compared to a chi-square distribution with 232 df gives strong evidence of over-dispersion (P < 0.001). We refit the model with over-dispersion estimated to obtain the sequential ANODEV table shown in Table S18.11.1. There is very strong evidence that separate slopes and intercepts are required. A composite set of residual plots is in Figure S18.11.2. There is a clear trend in the fitted value plot that we suspect is due to lack-of-fit of the separate lines model to the observed data. We investigate this further by inspecting plots of residuals against days within each treatment group (Figure S18.11.3) and of the data with the fitted model (Figure S18.11.4).

Table S18.11.1 A sequential ANODEV table for separate lines GLM for proportion of non-viable seeds with Binomial distribution and logit link.

Source of variation	df	Deviance	Mean deviance	Deviance Ratio	P (F prob.)
+ Days	1	6282.412	6828.412	1669.67	< 0.001
+ Condition	3	4735.465	1578.488	385.97	< 0.001
+ Days.Condition	3	1897.916	632.639	154.69	< 0.001
Residual	232	948.805	4.090		
Total	239	14410.599			

Figure S18.11.2 Composite set of residual plots based on standardized deviance residuals for GLM for separate lines model for proportion of non-viable seeds with Binomial distribution and logit link.

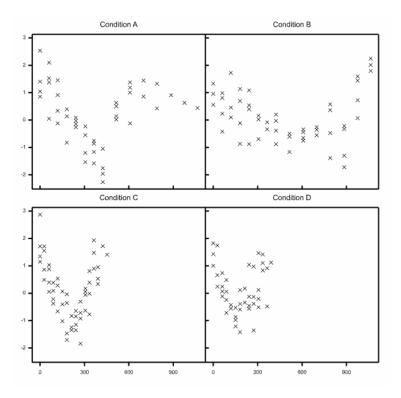


Figure S18.11.3 Standardized deviance residuals from separate lines model plotted against days.

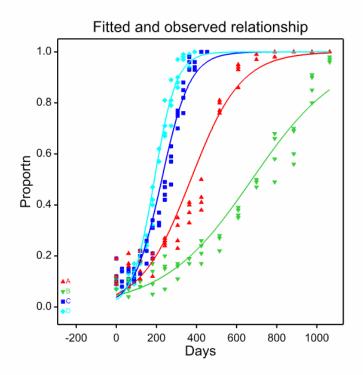


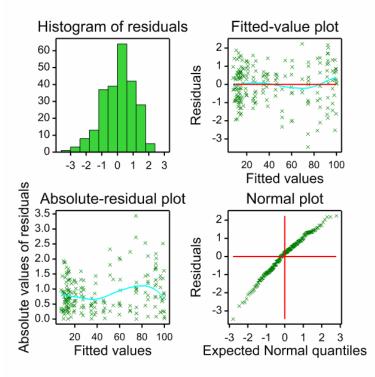
Figure S18.11.4 Fitted separate lines model with observed data for each condition.

Figure S18.11.3 shows strong curvature in the pattern of the residuals over time which reflects lack of fit to linear trend on the logit scale. The impact on the fitted model can be seen in Figure S18.11.4.

Lack of fit at the start of the experiment is particularly clear, as the observed patterns tail off above zero; some seeds are not viable even before storage. This phenomenon is sometimes called 'control mortality', ie. death in the absence of any treatment, and often causes problems with simple logistic regression models when it is present. It is possible to extend the model to include this parameter, but not within the framework of GLMs (this requires a non-linear model with a Binomial distribution). Instead, we will notice the quadratic shape of the residual plots in Figure S18.11.3, and investigate whether adding quadratic terms into the model can improve its fit (see also Section 17.1.2). If we calculate a new variate as

then we can write this new model in symbolic form as

Response variable:	Count
Probability distribution:	Binomial (number of tests $= 100$)
Link function:	logit
Explanatory component:	[1] + Condition*(<i>Days</i> + <i>DaySqrd</i>)


A sequential ANODEV table for this model is in Table S18.11.2. The residual mean deviance is much smaller, but a test shows there is still evidence of over-dispersion. Residual plots from this model are shown in Figure S18.11.5 and the fitted model is shown in Figure S18.11.6. In both cases, it is clear that the fit is greatly improved. We can also test formally for lack of fit to these fitted quadratic curves using a factor version of the *Days* variate (called fDay). The explanatory component of the model then becomes

```
Explanatory component: [1] + Condition*(Days+DaySqrd+fDay)
```

The lack of fit terms, fDay and Condition.fDay, then give strong evidence of lack of fit but the mean deviance associated with both terms is relatively small, and the differences in fitted values from the quadratic models are small. We might reasonably accept the quadratic model as an adequate description of the patterns whilst recognising that the fit is not perfect.

Source of variation	df	Deviance	Mean deviance	Deviance Ratio	P (F prob.)
+ Condition	3	666.912	222.304	153.04	< 0.001
+ Days	1	10896.965	10896.965	7501.66	< 0.001
+ DaySqrd	1	383.495	383.495	264.00	< 0.001
+ Condition. Days	3	1817.836	605.945	417.14	< 0.001
+ Condition. DaySqrd	3	314.195	104.732	72.10	< 0.001
Residual	228	331.195	1.453		
Total	239	14410.599			

Table S18.11.2 A sequential ANODEV table for GLM with quadratic terms for proportion of non-viable seeds with Binomial distribution and logit link.

Figure S18.11.5 Composite set of residual plots based on standardized deviance residuals for GLM for separate quadratic curves model for proportion of non-viable seeds with Binomial distribution and logit link.

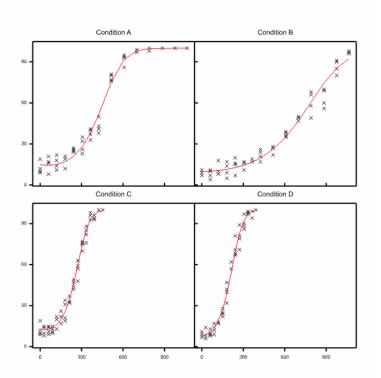


Figure S18.11.6 Fitted separate quadratic curves model with observed data.