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Exercise 6.6 (Data: courtesy R. Webster, Rothamsted Research, & previously Ecole Polytechnique Fédérale de 

Lausanne) 
 

The concentrations of several trace metals in a region of the Swiss Jura were quantified by a survey 

of soil samples at 366 sites (Atteia, Dubois & Webster, 1994). The metals measured (in mg/kg) 

included cadmium (Cd), chromium (Cr), copper (Cu) and zinc (Zn). The full data set was 

published in Goovaerts (1997). Here we consider a subset of 207 sample points on a square grid 

with approximately 250 m spacing. The land use at each sample point was classified into one of 

three categories (1 = forest, 2 = pasture, 3 = meadow). The unit number (DSample), spatial location 

(x- and y-coordinates in variates X and Y, respectively) and land use category (factor LandUse) for 

each sample can be found in file METALS.DAT along with the concentrations of each metal at each 

location (variates Cd, Cr, Cu and Zn). Analyse the concentration of each metal on an appropriate 

scale to determine if there are differences among the land types. Are there any metals for which 

you cannot come to a reasonable conclusion? Plot the co-ordinates of the spatial locations, and 

consider how you might look for spatial dependence in the residuals. Can you implement your 

idea? Is there any evidence of spatial dependence? 

 

Solution 6.6 

 

This is an unbalanced set of data: there are 38 samples in category 1 (forest), 43 in category 2 

(pasture) and 126 in category 3 (meadow). There are three measurements of copper (Cu) and two 

measurements of zinc (Zn) concentrations missing. As a first step, we analyse the concentration 

of each metal using a single factor model with symbolic form (using Cadmium concentration as 

an example): 

 

Response variable:  Cd 

Explanatory component: [1] + LandUse 

 

We then examine residual plots to see if any further action needs to be taken; we will consider 

each variable in turn.  

 

(a) Cadmium concentrations (variable Cd) 

 

A composite display of residual plots based on standardized residuals is shown in Figure S6.6.1. 

It is clear that the distribution of the residuals is skewed to the right (histogram bottom left) and 

that the distribution is not normal (normal plot, bottom right) but with a large number of 

observations and only three groups, it is not easy to see whether there is any variance 

heterogeneity. In addition, we might expect to see a greater spread in the meadow category simply 

because it has many more samples and so has greater probability of sampling the tails of the 

distribution. In this situation, it is helpful to use boxplots within each category to get a more 

accurate picture of the distribution. This is illustrated in Figure S6.6.2, where we have taken a 

sample of random normal values with common variance, allocated them to treatment groups in 
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the same proportions (38:43:126) as in our survey and then plotted them against the fitted value 

for each group. When plotting the individual points, the variation appears larger for the group with 

the smallest fitted value, which is the group with 126 observations. Using boxplots, it becomes 

clear that the interquartile range is actually quite stable across the three groups, it is only the length 

of the tails that changes. 

 
Figure S6.6.1. Composite set of residual plots based on standardized (std) residuals obtained from 

analysis of variate Cd.  

 

 
Figure S6.6.2. Random normal samples with common variance allocated to land use categories 

and plotted against land use mean cadmium values. 

 

A revised set of residual plots, using boxplots to examine distributions within land use categories 

is shown in Figure S6.6.3. The right skew of the distribution is apparent within each treatment 

group and the inter-quartile range is larger for the group with the largest mean. We can also 

calculate the sample mean and variance of residuals within each group, as in Table S6.6.1. The 

land use group with the largest mean (group 2) also has the largest variance, and Bartlett’s test 

gives strong evidence (P = 0.017) of heterogeneity in variances between groups. We will try to 

find a transformation such that the residuals conform with the model assumptions. 

 

Table S6.6.1 Table of sample means and unbiased sample variances for three land use categories: 

Cadmium concentrations. 

 

Land use category 1: forest 2: pasture 3: meadow 

Sample mean 1.373 1.790 1.165 

Unbiased sample variance 0.6462 1.0900 0.5490 
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Figure S6.6.3. Composite set of residual plots based on standardized (std) residuals obtained from 

analysis of variate Cd, with box-plots to show distributions within treatment groups. 

 

 
Figure S6.6.4. Composite set of residual plots based on standardized (std) residuals obtained from 

analysis of variate log10(Cd ). 

 

We first try a log-transformation (here to base 10) and fit the same model to the transformed data. 

Plots based on the standardized residuals from this analysis are shown in Figure S6.6.4. These 

plots suggest that the transformation has over-corrected the variance heterogeneity, as the within-

group variation is larger for smaller fitted values and the distribution is now skewed slightly to the 

left. We therefore try a square-root transformation and re-fit the model, leading to the residual 

plots in Figure S6.6.5. The square-root transformation appears to give a better result. Table S6.6.2 

shows the sample means and variances, and a Bartlett’s test shows these values to be consistent 

with a hypothesis of homogeneity of variances (P = 0.428). The normal plot (bottom right) is 

closer to a straight line and the distribution of the residuals is more symmetric (although possibly 

skewed slightly to the right). 
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Figure S6.6.5. Composite set of residual plots based on standardized (std) residuals obtained from 

analysis of variate sqrt(Cd ). 

 

Table S6.6.2 Table of sample means and unbiased sample variances for three land use categories: 

square-root transformed Cadmium concentrations. 

 

Land use category 1: forest 2: pasture 3: meadow 

Sample mean 1.126 1.282 1.028 

Unbiased sample variance 0.1093 0.1495 0.1096 

 

 

These plots seem acceptable, but because of the skew to the right we will try one final 

transformation, the cube root. Residual plots from this transformation are shown in Figure S6.6.6. 

This distribution seems more symmetric, the normal plot is closer to a straight line, and the within-

group variances are still similar (Table S6.6.3). We will therefore proceed with the analysis on the 

cube-root scale. 

 

 

Table S6.6.3 Table of sample means and unbiased sample variances for three land use categories: 

cube-root transformed Cadmium concentrations. 

 

Land use category 1: forest 2: pasture 3: meadow 

Sample mean 1.072 1.168 1.007 

Unbiased sample variance 0.0449 0.0567 0.0480 

 

 

The ANOVA table for analysis on the cube-root scale is Table S6.6.4. There is strong evidence 

for a difference in population mean cube-root concentration of cadmium among land use 

categories (F2,204 = 8.698, P < 0.001). Tables of predicted population means are in Table S6.6.5 

with SEDs and back-transformed values. The predicted population mean cube-root concentration 

of cadmium is greater in pasture than in forest or meadows. 
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Figure S6.6.6. Composite set of residual plots based on standardized (std) residuals obtained from 

analysis of variate sqrt(Cd ). 

 

Table S6.6.4 ANOVA table for Cd (1/3) (cube-root transformed concentrations). 

 

Source of 

variation 
df 

Sum of 

squares 
Mean square Variance ratio P-value 

LandUse 2 0.8561 0.4280 8.698 < 0.001 

Residual 204 10.0389 0.0492   

Total 206 10.8950    

 

 

Table S6.6.5 Predicted means of cadmium (mg/kg) on cube-root scale for three land use categories 

with back-transformed value. SEDs (on cube-root scale, 204 df): forest vs pasture = 0.0494; forest 

vs meadow = 0.0411; pasture vs meadow = 0.0392. 

 

Category 1: forest 2: pasture 3: meadow 

Cube-root scale 1.072 1.168 1.007 

Back-transformed 1.231 1.595 1.020 

 

 

(b) Chromium concentrations (variable Cr) 
 

We fit the same single factor model to chromium concentrations to obtain the composite display 

of residual plots (based on standardized residuals) shown in Figure S6.6.7. These plots seem 

acceptable. The overall distribution is reasonably symmetric, as are the distributions within land 

use categories. The variances within land use categories are similar (Bartlett’s test with P = 0.807, 

see also Table S6.6.6), and the normal plot is very close to a straight line. We will therefore analyse 

this variable without transformation. 
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Figure S6.6.7. Composite set of residual plots based on standardized (std) residuals obtained from 

analysis of variate Cr . 
 

Table S6.6.6 Table of sample means and unbiased sample variances for three land use categories: 

Chromium concentrations. 

 

Land use category 1: forest 2: pasture 3: meadow 

Sample mean 28.71 44.97 34.23 

Unbiased sample variance 91.214 102.057 86.642 

 

Table S6.6.7 ANOVA table for Cr (untransformed). 

 

Source of 

variation 
df 

Sum of 

squares 
Mean square Variance ratio P-value 

LandUse 2 5812.595 2906.298 32.061 < 0.001 

Residual 204 18492.175 90.648   

Total 206 24304.770    

 

Table S6.6.8 Predicted means of chromium (mg/kg) for three land use categories. SEDs (204 df): 

forest vs pasture = 2.120; forest vs meadow = 1.762; pasture vs meadow = 1.682. 

 

Category 1: forest 2: pasture 3: meadow 

Cube-root scale 28.71 44.97 34.23 

 

 

The ANOVA table is Table S6.6.7. There is strong evidence for a difference in population mean 

concentration of chromium among land use categories (F2,204 = 32.061, P < 0.001). Tables of 

predicted population means are in Table S6.6.8 with SEDs. The predicted population mean 

concentration of chromium is greater in pasture than in meadows, which in turn is greater than in 

forests. 
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(c) Copper concentrations (variable Cu) 

 

There are three missing measurements of copper concentrations, so we remove these observations 

from the data set before analysis. We fit the single factor model to obtain the composite display 

of residual plots (based on standardized residuals) shown in Figure S6.6.8. The distribution of the 

residuals is strongly skewed to the right, and the normal plot shows marked curvature. The 

boxplots of the distributions within each treatment group show that the within-group distributions 

are skewed and the variance is larger for the groups with larger fitted values. In this case, this 

pattern is also clear from plot of the individual residuals (not shown). These data clearly do not 

obey the assumptions underlying the single factor model and so we seek a transformation to 

improve matters. 

 We first try a log transformation (to base 10). This improves matters somewhat (Figure 

S6.6.9): the right skew in the distribution is much smaller and the normal plot is close to a straight 

line. The within-group variances are more even, although the variance for group 2 (second highest 

mean on log-scale) appears larger, and this is verified by Bartlett’s test (P < 0.001). However, 

transformation to other scales (we tried square root and reciprocal) does not resolve this problem. 

We choose to proceed with the analysis on the log10-scale but to treat out results with some caution.   

 

 

 
 

Figure S6.6.8. Composite set of residual plots based on standardized (std) residuals obtained from 

analysis of variate Cu. 

 

 

Table S6.6.9 ANOVA table for log10(Cu) (log10 transformation). 

 

Source of 

variation 
df 

Sum of 

squares 
Mean square Variance ratio P-value 

LandUse 2 5.8459 2.9230 38.232 < 0.001 

Residual 201 15.3670 0.0765   

Total 203 21.2129    
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Figure S6.6.9. Composite set of residual plots based on standardized (std) residuals obtained from 

analysis of variate log10(Cu) (log10-transformation). 

 

 

The ANOVA table for analysis of log10-transformed copper concentrations is Table S6.6.9. This 

shows strong evidence of a difference between population mean log10-transformed copper 

concentrations between land use categories. The predicted population means are shown in Table 

S6.6.10. The predicted population mean log10 copper concentration in forests is smaller than that 

in pasture or meadows.  

 

 

Table S6.6.10 Predicted means of log10-transformed copper concentrations (mg/kg) for three land 

use categories with back-transformed value. SEDs (on log10 scale, 201 df): forest vs pasture = 

0.0619; forest vs meadow = 0.0513; pasture vs meadow = 0.0494. 

 

Category 1: forest 2: pasture 3: meadow 

log10 scale 0.901 1.315 1.341 

Back-transformed 7.95 20.67 21.93 

 

 

(d) Analysis of zinc concentrations (variate Zn) 

 

There are two missing measurements of zinc concentrations, so we remove these observations 

from the data set before analysis. We again fit the single factor model to obtain the composite 

display of residual plots (based on standardized residuals) shown in Figure S6.6.10. The 

distribution of the residuals is strongly skewed to the right, and the normal plot shows marked 

curvature. The boxplots of the distributions within each treatment group show that the within-

group distributions are skewed and the variance is larger for the groups with larger fitted values. 

In this case, this pattern is also clear from plot of the individual residuals (not shown). These data 

clearly do not obey the assumptions underlying the single factor model and so we seek a 

transformation to improve matters. 
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Figure S6.6.10. Composite set of residual plots based on standardized (std) residuals obtained 

from analysis of variate Zn. 

 

 

We first try a log10-transformation, and the resulting residual plots are shown in Figure S6.6.11. 

The distribution has become more symmetric and the normal plot is close to a straight line. 

However, there is still a suggestion that the variance is greater for groups with larger mean values. 

Again, we cannot find a transformation to resolve this issue, and so we proceed with analysis on 

the log10-transformed values with caution.  

 

 

Table S6.6.11 ANOVA table for log10(Zn) (log10 transformation). 

 

Source of 

variation 
df 

Sum of 

squares 
Mean square Variance ratio P-value 

LandUse 2 0.8847 0.4424 17.461 < 0.001 

Residual 202 5.1176 0.0253   

Total 204 6.0024    

 

 

Table S6.6.12 Predicted means of log10-transformed zinc concentrations (mg/kg) for three land 

use categories with back-transformed value. SEDs (on log10 scale, 202 df): forest vs pasture = 

0.0356; forest vs meadow = 0.0295; pasture vs meadow = 0.0284. 

 

Category 1: forest 2: pasture 3: meadow 

log10 scale 1.747 1.957 1.869 

Back-transformed 55.89 90.59 74.01 
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Figure S6.6.11. Composite set of residual plots based on standardized (std) residuals obtained 

from analysis of variate log10(Zn). 

 

The ANOVA table for analysis of log10-transformed zinc concentrations is Table S6.6.11. This 

shows strong evidence of a difference between population mean log10-transformed zinc 

concentrations between land use categories. The predicted population means are shown in Table 

S6.6.12. The predicted population mean log10 zinc concentration in forests is smaller than that in 

meadows, which is smaller than that in pasture.  

 

Overview of analyses 

 

We have found a cube-root transformation for cadmium that makes the residuals appear consistent 

with normal errors, and chromium appears to be consistent with the model assumptions without a 

transformation, so the analysis and interpretation for these two variables is straightforward. 

 For copper concentrations, there appears to be heterogeneity between land use categories 

that is not related to the population means. It is therefore unlikely that transformation can solve 

this problem. There might be sub-classes of land use within the more variable group with different 

means – this would cause extra within-group variation – and if we can identify the sub-classes 

then we might include them in our analysis. Similarly, there might be one or more additional 

explanatory variables that should be included in the model to account for within-group differences 

(see Chapters 14-15). Without any further information, we might use a weighted analysis to 

analyse this data, but this is beyond the scope of our book. As an ad hoc alternative, as there are 

only three groups, we could compare groups using t-tests but without assuming a common 

variance.  

 For zinc concentrations, the heterogeneity does appear to be related to group means, but is 

not resolved by the log10 transformation. We might speculate that these data come from a 

distribution where the variance is related to a power of the mean (such as the negative binomial 

distribution) and try to identify this distribution and use it in the analysis (like the GLMs in Chapter 

18). 

 Finally, we should remember that with such a large data set, the ANOVA is likely to be 

able to detect very small differences in population means. It would be sensible to pause to consider 

whether differences are biologically meaningful before reporting them so that the differences 

(although statistically significant) can be put into an appropriate context. 
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Checking for spatial dependence 

 

A plot of the spatial co-ordinates is shown in Figure S6.6.12. The simplest way to check visually 

for spatial dependence on a grid in two dimensions is a heat map of the residuals, where the colour 

of the area is related to the value of the residual. Any trend in colour across the plot indicates a 

spatial trend in the residuals. This type of heat map is shown in Figure S6.6.13 for the residuals 

from analysis of the cube-root of Cadmium concentrations. There is no obvious evidence of spatial 

trend here. We could also plot sequences of residuals within rows or columns of the grid to look 

for serial correlation, but here we choose to plot residuals against their neighbour within rows or 

columns. These plots are shown in Figure S6.6.14, again for cube-root Cadmium concentrations. 

This plot shows no evidence of spatial correlation. 

 

 
Figure S6.6.12. Plot of the spatial-coordinates at which metal concentrations were measured 

(actual spacing approximately 250 m). 

 

 
Figure S6.6.13. Heat map of residuals from analysis of cube-root Cadmium concentrations in 

spatial locations. 
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Figure S6.6.14. Plot of residual vs residual from neighbouring (a) row or (b) column for cube-

root Cadmium concentrations. 

 

 

A similar procedure can be followed for each of the other metals. In fact, we do not expect to find 

any evidence of spatial trend here, as Atteia et al (1994) found no evidence of spatial correlation 

for these metals for samples at 250m distance.  

 


